Abstract
When unimanual left–right movement responses are made to up–down stimuli, performance is better with the up–right/down–left mapping when responding in the right hemispace and with the up–left/down–right mapping when responding in the left hemispace. We evaluated whether this response eccentricity effect is explained best in terms of rotational properties of the hand (the end-state comfort hypothesis) or asymmetric coding of the stimulus and response alternatives (the salient features coding hypothesis). Experiment 1 showed that bimanual keypresses yield a response eccentricity effect similar to that obtained with unimanual movement responses. In Experiment 2, an inactive response apparatus was placed to the left or right of the active response apparatus to provide a referent. For half of the participants, the active and inactive apparatuses were joysticks, and for half they were response boxes with keys. For both response types, an up–right/down–left advantage was evident when the relative position of the active response apparatus was right but not when it was left. That bimanual keypresses yield similar eccentricity and relative location effects to those for unimanual movements is predicted by the salient features coding perspective but not by the end-state comfort hypothesis.