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Abstract
Value-driven attentional capture (VDAC) refers to a phenomenon by which stimulus features associated with greater reward 
value attract more attention than those associated with smaller reward value. To date, the majority of VDAC research has 
revealed that the relationship between reward history and attentional allocation follows associative learning rules. Accord-
ingly, a mathematical implementation of associative learning models and multiple comparison between them can elucidate 
the underlying process and properties of VDAC. In this study, we implemented the Rescorla-Wagner, Mackintosh (Mac), 
Schumajuk-Pearce-Hall (SPH), and Esber-Haselgrove (EH) models to determine whether different models predict different 
outcomes when critical parameters in VDAC were adjusted. Simulation results were compared with experimental data from 
a series of VDAC studies by fitting two key model parameters, associative strength (V) and associability (α), using the Bayes-
ian information criterion as a loss function. The results showed that SPH-V and EH- α outperformed other implementations 
of phenomena related to VDAC, such as expected value, training session, switching (or inertia), and uncertainty. Although 
V of models were sufficient to simulate VDAC when the expected value was the main manipulation of the experiment, α of 
models could predict additional aspects of VDAC, including uncertainty and resistance to extinction. In summary, associa-
tive learning models concur with the crucial aspects of behavioral data from VDAC experiments and elucidate underlying 
dynamics including novel predictions that need to be verified.

Keywords  Value-driven attentional capture · Associative learning · Computational simulation · Mathematical 
implementation · Model comparison

Introduction

Selective attention is the process of selecting particular 
stimuli for further processing (Treisman, 1964). In the lit-
erature on attention, growing evidence denotes that stim-
uli associated with larger rewards attract more attention 

involuntarily than those associated with smaller rewards. 
This phenomenon is referred to as value-driven attentional 
capture (VDAC; Anderson et al., 2011b). Here, VDAC is 
considered to incorporate associative learning within its core 
mechanism due to the direct association between stimuli and 
rewards. Importantly, however, multiple interpretations from 
different, often opposing, models elucidate associative learn-
ing. Furthermore, the extent to which the way learning modi-
fies VDAC is comparable to associative learning is unclear, 
given that factors other than reward magnitude influence 
the stimulus–reward associations identified in nonhuman 
animal research. Thus, it is necessary to investigate which 
associative learning model best describes VDAC and which 
learning-related factors, other than the magnitude of reward, 
influence the underlying dynamics of VDAC.

In a classical VDAC paradigm, the stimulus–reward 
association occurs during a training phase, which is then 
followed by a test phase that reveals the attentional priority 
for stimuli previously associated with a high reward value 
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compared to those previously associated with either a low 
or no reward value (Anderson & Halpern, 2017; Anderson 
et al., 2011b; Bucker & Theeuwes, 2017; Mine & Saiki, 
2015). For instance, in a study by Anderson et al. (2011b), 
participants were instructed to search for either a red or 
green circle among heterogeneously colored circles in the 
training phase. Specifically, one of the two target colors was 
paired with a higher reward contingency, which comprised 
an 80% chance of providing a high reward (e.g., 5 cents) and 
a 20% chance of providing a low reward (e.g., 1 cent), and 
vice versa for the other target color. In the subsequent test 
phase, participants were instructed to search for a unique 
shape (i.e., a diamond among circles, a circle among dia-
monds). One distractor was rendered in the reward-associ-
ated color (i.e., red or green with an equal probability) in 
half of the trials. Importantly, responses were slower when 
the distractors previously associated with the high reward 
were presented than when the distractors associated with the 
low reward were presented. This signifies that the magnitude 
of the associated reward modulates the allocation of atten-
tion (Anderson et al., 2011b). Given that attentional capture 
by a task-irrelevant stimulus led to inefficient search, VDAC 
is generally assumed to follow Pavlovian conditioning (i.e., 
the extent to which a stimulus predicts reward) rather than 
instrumental learning (Bucker & Theeuwes, 2017; Le Pelley 
et al., 2015).

Pavlovian conditioning, one of the primary forms of asso-
ciative learning, involves the presentation of two stimuli 
temporally and spatially close together. Modern theories 
emphasize the role of prediction error, which is the differ-
ence between an event's expected and actual outcomes (Hol-
land & Schiffino, 2016). One class of implementation, such 
as the Rescorla-Wagner (RW) model, operates by directly 
reassigning the acquired strength of the association (associa-
tive strength; V) using the prediction error computed with 
the received value of a reinforcer or punisher.

Meanwhile, other implementations that also consider the 
effectiveness of the pairing, argue that the prediction error 
also changes the associability (α) of conditioned stimuli. The 
models in this class include Mackintosh (Mac) and Pearce-
Hall (PH) formulation and share the characteristic that the α 
is adjusted through exposure to a stimulus. Thus, this class 
of models explain many more learning phenomena than the 
models described in the previous paragraph. The α plays a 
part in several learning phenomena, as seen by latent inhibi-
tion (Lubow & Moore, 1959), which manifests as a retarded 
pairing when a stimulus is repeatedly delivered prior to the 
conditioning without altering the V (Wagner & Rescorla, 
1972).

Importantly, Pavlovian conditioning encompasses  
a multitude of factors, other than V and α, such as  
predictiveness, and uncertainty (Koenig, Kadel, et  al., 
2017a; Koenig, Uengoer, et al., 2017b; Le Pelley et al., 

2019). Thus, interpreting VDAC using the Pavlovian con-
ditioning paradigm requires an investigation of how each 
factor – either alone or through interaction with other fac-
tors – modulates the dynamics of the effect. Applying the 
mathematical implementations of learning models on VDAC 
would be an effective way to investigate these factors and to 
explain fundamental cognitive mechanisms that behavioral 
data fail to disclose. However, to the best of our knowledge, 
only a few studies have attempted to interpret VDAC with 
associative learning models (Le Pelley et al., 2016; Le Pelley 
et al., 2019), and none have conducted a detailed comparison 
of how various models explain the behavioral data obtained 
from the VDAC literature.

Therefore, to advance our understanding of VDAC, the 
aim of the present study was to examine behavioral phenom-
ena observed in the literature by comparing the simulated 
results of representative associative learning models. Four 
major associative learning models – RW, Mac, Schmajuk-
Pearce-Hall (SPH), and Esber-Haselgrove (EH) – were 
employed and tested to determine which is most applicable 
to explain VDAC observed in human studies. The outputs 
of V and α obtained from simulations were quantitatively 
compared to the behavioral results from the VDAC literature 
by utilizing the Bayesian information criterion (BIC) and 
negative log-likelihood.

Four factors were considered critical in VDAC: expected 
value (EV), training session, uncertainty, and switching. We 
selected these factors to confirm basic phenomena in VDAC 
and differentiate each associative learning model based on 
their core assumptions. By comparing the simulated pre-
dictions from different associative learning models and the 
existing behavioral data for each factor, the aim of the pre-
sent study is to determine the learning models most suitable 
for elucidating value-driven attention.

Learning‑related factors in value‑driven 
attention

Expected value

EV, which is calculated by multiplying each of the pos-
sible outcome values by the probability of each outcome 
and summing all of the values, is assumed to be the most 
fundamental factor that determines the strength of VDAC. 
As the EV associated with a stimulus feature increases, the 
associative strength between the stimulus feature and value 
also increases, consistent with VDAC.

Although VDAC has been observed mostly within the 
visual domain (see Anderson, 2016a, for a review), VDAC 
is also present in the auditory domain (Anderson, 2016b). In 
the training phase, participants were asked to press the space 
bar when they heard “A” or “Y.” A response to one target 
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sound resulted mostly in a high reward, while a response 
to the other target resulted mostly in a low reward. In the 
test phase without reward, the target and nontarget sounds 
served as distractors during a visual search task. Responses 
for the visual search were delayed when the sound frequently 
associated with the high reward was played compared to 
when the sound frequently associated with the low reward 
was played. This result indicates that the sound associated 
with the high reward captured more attention than the other 
sound. Thus, the study showed that VDAC also operates in 
the auditory domain.

In addition, although most VDAC experiments have used 
the visual search task in both the training and the test phases, 
Mine and Saiki (2015) confirmed VDAC via a flanker–com-
patibility task in the training phase, in which a target letter 
was presented in the center of the screen with nontarget let-
ters (flanker letters) presented on the left and right sides 
of the target. The colors of the flankers predicted rewards 
(e.g., red flankers frequently yielded high reward and the 
green flankers frequently yielded low reward). In the test 
phase, the high reward color distractors delayed the search 
more than the low reward color distractors, indicating that 
the high reward color distractors captured attention more 
than the low reward color distractors. These imply that 
VDAC is easily generalized to different tasks. Hence, the 
presence of VDAC across different sensory modalities and 
tasks increases the generalizability of the effect of EV in the 
allocation of attention.

Training session

Most previous studies using the classical VDAC paradigm 
failed to observe a statistical difference in behavioral per-
formances between the target types in the training phase 
(Anderson & Halpern, 2017; Kim & Beck, 2020; Miranda 
& Palmer, 2014; Roper & Vecera, 2016). These results are 
possibly due to a ceiling/floor effect: while reward feedback 
allowed participants to adequately form stimulus–reward 
associations, top-down attentional control may have modu-
lated the visual search for the two target colors by assigning 
equal priority (Anderson et al., 2013), as the reward itself 
was irrelevant to identifying the line orientation within the 
target circles. The attentional control required to maintain 
the task goal may be too strong to statistically render value-
driven attention by implicit learning.

Specifically, Anderson et al. (2011a) provided a fine-
grained analysis of behavioral performance across target 
types. They divided the training phase into ten bins of 
(approximately) 100 trials and examined how the effect of 
reward on target selection changed over the course of the 
training phase. Similar to the studies previously mentioned, 
Anderson et al. (2011b) failed to obtain a significant main 
effect of target type, again confirming that the operation of 

attentional control is too strong to statistically detect the 
attentional bias driven by incidental learning. Notably, 
however, the numerical differences in search performance 
between the high- and low-reward targets showed a steep 
increasing trend, peaking in the third (i.e., 201–300 tri-
als) and fourth (i.e., 301–400) bins, followed by a gradual 
decline in the latter half of the training phase. Although the 
interaction between target type and trial bin failed to reach 
significance, we considered that such a numerical trend 
demanded further investigation.

Switching and inertia

Previous studies have confirmed that VDAC resists extinc-
tion even over the course of several hundred unrewarded 
trials (Anderson & Yantis, 2013; Della Libera & Chelazzi, 
2009; Stankevich & Geng, 2014). Although the classical 
conditioning theory of learning proposed that a previously 
conditioned response to a reward-predictive stimulus will 
vanish in the absence of reinforcement (Pavlov, 1927; Wag-
ner, 1961), most studies on VDAC have shown no signifi-
cant reduction in attentional capture by the reward-related 
distractors in the test phase (Anderson et al., 2011b; Ander-
son & Yantis, 2012, 2013; Bucker et al., 2015; Failing & 
Theeuwes, 2014; Rothkirch et al., 2013; Sali et al., 2014; 
Stankevich & Geng, 2014; Theeuwes & Belopolsky, 2012). 
These findings suggest that reward learning generates a per-
sistent attentional priority in favor of the previously reward-
associated feature even when no longer predictive of reward 
(Milner et al., 2023).

Liao and Anderson (2020) investigated how a previously 
formed reward association influences the subsequent updat-
ing of attentional allocation in response to changes in reward 
contingencies. They reversed the reward contingencies of 
two stimuli (i.e., high and no reward) in the middle of the 
experiment without instruction, which led to the acquisition 
of value for the new high-reward distractor and extinction 
for the old high-reward distractor. Importantly, the residual 
attentional bias toward the old high-reward target stimulus 
persisted during the training phase and even during the test 
phase when it served as a distractor. The results indicated 
that VDAC does not quickly update with new reward learn-
ing and lingers even after value-reversal. These findings fur-
ther substantiate the stability and the persistence of VDAC 
demonstrated in the previous literature (Anderson & Yantis, 
2013).

Uncertainty

VDAC is also  influenced by how well a cue predicts a 
reward, or, put another way, by the degree of uncertainty 
around this correlation (Le Pelley et  al., 2016). How-
ever, there are two seemingly contradictory models: the 
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predictiveness-based principle (Mackintosh, 1975) and the 
uncertainty-based model (Pearce & Hall, 1980). According 
to the predictiveness principle (Mackintosh, 1975), atten-
tion prioritizes cues that reliably predict subsequent events 
to exploit known stimulus–outcome relationships (Easdale 
et al., 2019; Le Pelley, 2004; Le Pelley et al., 2013; Mitch-
ell & Le Pelley, 2010). According to the uncertainty-based 
model (Pearce & Hall, 1980), attention is preferentially 
deployed for cues when outcomes are uncertain, thereby 
reducing the uncertainty regarding the stimulus–outcome 
association.

In general, the uncertainty principle has been supported 
in the VDAC literature. For example, Cho and Cho (2021) 
explored whether certain and uncertain rewards influ-
ence VDAC differently. As in a typical VDAC experiment 
(Anderson et al., 2011b), the experiment had a training 
phase and a test phase. In the training phase, search targets 
were red and green. One color yielded uncertain rewards: 
100 points for 25% of the trials and 0 points for 75% of the 
trials. The other color yielded certain rewards: 25 points 
for all trials. Therefore, the EVs of the certain and uncer-
tain colors were identical, but the certainty of the predicted 
rewards differed. In the test phase, the search target was a 
diamond among heterogeneously colored circles. In some 
trials, one of the circles was either the certain-related color 
or the uncertain-related color. The search was delayed longer 
for cases with the uncertain-related color distractor than for 
those with the certain-related color distractor. In summary, 
VDAC was larger for the distractor associated with uncer-
tain rewards than for the distractor associated with certain 
rewards even when the EVs were kept identical.

Le Pelley et al. (2019) investigated whether VDAC is 
influenced by the consistency with which stimuli signaled a 
particular magnitude of reward. In their Experiment 1, par-
ticipants were asked to make an eye-movement toward a dia-
mond-shaped target among circles. Three distractor colors 
were related to the amount of reward: two colors consistently 
predicted a high reward and a low reward, and another color 
yielded low and high rewards with equal probability. Unlike 
other experiments, there was no separation between training 
and testing sessions, and one or two of the three colors were 
presented in every trial. The results showed that (1) gaze on 
the high-value color was more probable than other colors, 
and (2) the probability of gaze on the nonpredictive color 
was numerically higher than that of low-value color. These 
findings suggest that the EVs of the colors influence VDAC, 
while predictiveness has little influence on VDAC.

Furthermore, eye-gaze data from Experiment 2 dem-
onstrated that participants’ gazes and first saccades were 
directed more strongly toward nonpredictive than predictive 
distractors. In a similar vein, Koenig, Kadel, et al. (2017a) 
showed that the duration of gaze fixation was longer for 
stimuli associated with uncertain rather than certain rewards. 

These findings suggest that in addition to EV, uncertainty 
also influences value-driven attention and supports the 
uncertainty-based model in VDAC.

Simulation experiments

Methods

We selected four associative learning models in this study: 
the RW, Mac, SPH, and EH models. All have two terms 
in their core structure: V and α. The V shows the extent 
to which the stimulus predicts the upcoming unconditioned 
stimulus (US). Conversely, α determines how fast the 
association between two stimuli is formed. A large body 
of research denotes α with various names, including learn-
ing rate parameter (Rescorla & Wagner, 1972), acquired 
saliency (Esber & Haselgrove, 2011), or, more frequently, 
attention (Le Pelley et al., 2019). However, we refrain from 
using cognitively interpreted terms; instead, we use α as 
associability in the present study. To compare which output 
value – V and α – best describes VDAC, we generated two 
sub-models (V model and α model) from each model (RW, 
Mac, SPH, EH) and treated them as separate models in this 
study. Therefore, a total of eight models were included in 
this study.

Since 1970, associative learning theories have incorpo-
rated the concept of learning ability based on expectancy 
violation. First introduced by Bush and Mosteller (1955), 
expectancy violation is calculated as the discrepancy 
between expectation and the actual outcome. Rescorla and 
Wagner (1972) developed this idea so that the change in 
V at trial t (ΔVt) is proportional to the difference between 
the sum of expectations (∑CS ∈ tVt) and the US (λ). They 
also included two constants, α and β, each representing the 
learning rate and the physical intensity of the stimulus and 
formulated the RW model (Eq. 1).

Such an implementation explained a broad range of 
experimental findings from animal experiments and quickly 
became the most influential theory in associative learning. 
Here, we included the RW model as a baseline model as the 
model assumes constant α throughout learning.

Next, we selected two contradictory models, the Mac and 
PH models, both of which have α adjustment mechanisms. 
They differ in the rules they propose for predicting how the 
α changes if the outcome associated with the stimulus is not 
stable. The Mac model proposed that α is determined by how 
correctly a stimulus predicts the US. The model proposed 
that the conditioned stimulus (CS) s’s α ( Δαs

t
 ) at the trial t is 

(1)ΔVs
t
=

{
αβs

(
λt −

∑

CS s�∈t
V

s�

t

)

0

, if CS s ∈ Trial t

, otherwise
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controlled by the discrepancy between the observed and the 
predicted US according to the following rule:

where D represents the amount of discrepancy defined as:

In contrast, the PH model states that if the stimulus per-
fectly predicts the US, no further α is required as the learn-
ing has already reached its asymptote. In this sense, the α 
of the model relies only on the prediction error, defined as

where V̇t represents the expected intensity of the US on 
trial t. Another important characteristic of the PH model that 
differs from the Mac model is the separation of inhibitory 
learning. The model incorporates the idea of no-US repre-
sentation by Konorski (1967) and uses a term representing 
the absence of the US, V , in inhibitory conditioning. The 
value of V increases when the expected intensity of the US is 
larger than its actual intensity. Since there are two V values 
for each stimulus – excitatory and inhibitory – the expected 
US intensity at trial t is calculated as follows:

However, we had to refer to other studies for our quanti-
tative simulations for the following reasons. First, Mackin-
tosh (1975) did not formalize a complete model; instead, he 
proposed the α update rule. Therefore, in the present study, 
we used the modified implementation of the Mac model by 
Moore and Stickney (1980). The Mac model implementation 
uses a similar structure to the RW model ( Eq. 1), but the α 
is changed according to the following rule:

The constant rate parameter, k, acts as a learning rate and 
two terms – 

(
1 − αs

t

)
 and αs

t
 – are incorporated to impose 

“the law of diminishing returns.” We modified the imple-
mentation of Moore and Stickney (1980) with an additional 
ϵ parameter, which represents a small positive number to 
decrease the α when the two discrepancies are equal.

Second, the α formalized by Pearce and Hall (1980) does 
not incorporate the concept of momentum in formulating α. 
A learning schedule where the presented US is stable during 

(2)
{
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a certain number of trials does not cause a problem in the 
simulation. However, if the presence or intensity of the US 
changes during the learning schedule, α without momentum 
can vigorously fluctuate. Accordingly, here we used a modi-
fied version of the PH model developed by Schmajuk and 
Moore (1985) that introduced momentum as follows:

where γ modulates the magnitude of the momentum. In 
this way, the fluctuation of the α value can be moderated.

Finally, we chose the EH model (Esber & Haselgrove, 
2011) as an example of a hybrid model, which incorporates 
multiple stimulus-processing modules. Although there are a 
large number of hybrid models ranging from a simple model 
that uses combined α from the Mac and PH models (Le 
Pelley, 2004) to models that have more than two modules 
(George & Pearce, 2012; Schmajuk et al., 1996; Wagner, 
1981; Wagner & Brandon, 1989), we included the EH model 
because of its mathematical and systemic simplicity. The 
EH model is an intermixed model that incorporated several 
aspects of the Mac and the PH model. The α of the model 
proportionally increases with the expectancy ( Vt + Vt ) as 
in the Mac model, and the model uses separate terms for 
inhibitory conditioning, V , as in the PH model. In addition, 
the model included a negative term in the α to account for 
latent inhibition, and used separate learning rate parameters 
for excitatory and inhibitory conditioning. Because of the 
similarity between this and the other models, it was easy to 
compare simulation results between models. The detailed 
mathematical implementation of all models used in this 
study is presented in the Online Supplementary Material 
(OSM; S1: Model implementation).

Simulation

We employed maximum likelihood estimation to calculate 
the goodness of fit of each model. To calculate the maxi-
mum likelihood, we require two probability distributions, 
one from human experimental data and the other from the 
model. The best method for generating a probability distri-
bution for experimental data would be building a nonpara-
metric probability distribution from raw data. However, 
due to the simplicity, we assumed that behavioral indices 
follow a Gaussian distribution; therefore, we generated 
artificial distributions of experiments using values pre-
sented in the studies. First, we selected one behavioral 
index from an experiment, such as response time (RT) or 
proportion of eye fixation. Then we used the difference 
between the target’s and the control’s behavioral index 
(ex. [RT of Stimulus 1] - [RT of Control Stimulus]) as the 
mean of the distribution. We used a fixed value of 3 for 
the standard deviation after confirming that this would not 

(7)αt = γ||λt − V̇t−1
|
| + (1 − γ)αt−1,
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alter the relative goodness of fit between the models’ simu-
lations (OSM, S2: Effect of experiment’s SD on simulation 
results). We used the RW-α model (constant VDAC for all 
stimuli) as a baseline and ordinally compared models’ per-
formances. Next, we simulated each experiment to gener-
ate a probability distribution for the model. The simulation 
mimicked the experiment, including the stimulus composi-
tion and the total numbers of training and testing trials. As 
for the reward in experiments, we used the relative ratio 
of different reward types for the simulation. For instance, 
if an experiment has two reward types with values of 500 
points and 50 points, we set the intensity of the US (λ) as 1 
and 0.1, respectively. We also used 200 randomly shuffled 
experiment schedules because the order of stimulus pres-
entation alters the behavior of models. We used a linear 
transformation to directly compare simulation results with 
behavior indices. In this procedure, a model’s output, V or 
α, was transformed into the corresponding behavior index, 
such as milliseconds (ms) for RT and percentage (%), by 
following the equation.

These two linear transformation parameters – weight, 
w, and bias, b – were also added to the optimization algo-
rithm to find the best match that maximizes the likeli-
hood. Finally, we calculated how likely these transformed 
values could be observed from the probability distribu-
tions of participants’ behavior data. We used the negative 
log-likelihood as a loss function to find the model and 
the linear transformation parameters. We wrote custom 
MATLAB scripts that implement the sequential quadratic 
programming algorithm to find the optimal parameters. In 
addition, we used the MultiStart function with 60 different 
initial parameter sets to discover the global minima. All 
MATLAB scripts, along with the UI-based model simula-
tor, can be downloaded from Github (https://​github.​com/​
knowb​lesse/​Model​ing).

Model comparison

We compared the goodness-of-fit between models based on 
the BIC score calculated for each model. As the RW-α model 
assumes stable attentional allocation to all stimuli, we used 
the performance of this model as a baseline for the model 
comparison. Then we calculated the BIC value ratio of the 
remaining associative learning models. Among the seven 
models, we selected three models with the lowest BIC value 
ratio and marked them bold in the tables. If a model’s BIC 
value ratio exceeded 1, this was also marked in the tables 
as this could be interpreted as the model prediction being 
contrary to the experimental results.

behavior index (RT,%) = w ⋅

(
model’s output

)
+ b

Results

Expected value

First, we compared the simulation results of four studies 
(Anderson, 2015; Anderson & Halpern, 2017; Anderson 
et al., 2011b; Mine & Saiki, 2015) with a similar experi-
mental paradigm to observe the general properties of each 
associative learning model. These studies used two stimuli 
that differ in the EV of the associated reward. The simula-
tion results from all models showed a typical growth curve 
during training sessions in which stimuli were associated 
with rewards. During testing sessions, previously rewarded 
stimuli acted as distractors without a reward, resulting in 
a slow extinction curve. Notably, regardless of the model 
type, V or α, all simulations predicted stronger VDAC for 
the stimulus associated with a higher EV than one associated 
with a lower EV (representative examples are presented in 
Fig. 1; the other three models showed a similar result).

Next, we observed that the asymptote values of models 
during training sessions varied across simulated experi-
ments. We found that as the ratio of EVs between two stim-
uli increased the asymptote differences widened (Table 2). 
Especially, the experiment by Anderson (2015), which used 
a 10-cent reward for one stimulus and no reward for the 
other, reported the highest asymptote difference among all 
experiments (Figs. 1A and 2A). Since V reflects the strength 
of association, these characteristics were more evident in V 
models than in α models.

In addition, as one of the studies (Anderson et al., 2011b) 
used a 2.1–4.2 times longer training phase than other experi-
ments, we examined whether elongating the training ses-
sion changes the dynamic of the simulation (Fig. 1D). The 
simulation showed that the VDAC had already reached its 
asymptote during the initial phase of the training session 
(approximately 200 trials) and remained stable during the 
rest of the session. To conclude, all models acquired greater 
attentional allocation to the stimulus paired with higher 
EVs when the main manipulation was EV. These results are 
consistent with the core idea of VDAC. In all four studies, 
SPH-V and EH- α were always included in the top three 
best-fit models (Table 1, Fig. 2).

Training session

Next, we focused on the training session to understand 
the dynamics of the learning curves of two stimuli while 
pairing them with different types of rewards. In the previ-
ous section, we showed that a prolonged training session 
does not alter the asymptote or learning speed of VDAC. 
We selected another study for a detailed dissection of the 
training session. Anderson et al. (2011a) reported an RT 
of approximately 100 trial bins during a training session 

https://github.com/knowblesse/Modeling
https://github.com/knowblesse/Modeling
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Fig. 1   Simulation results of RW-V model. The shades around the lines show a 1 standard deviation. The shaded areas indicate test sessions that 
the simulator targeted to fit

Fig. 2   Simulated behavior results using EH- α model (colors) along 
with the corresponding experiment data (gray) from two experiments: 
Anderson (2015) Exp1 (A) and Mine & Saiki (2015) Exp2 (B). Black 
lines represent the SEM. The SEM of simulated results are omitted 

due to the small size. The simulated reaction time (RT) for the former 
nontarget/control stimulus left empty, as models cannot predict con-
trol RT value, rather they calculate the difference of RT compared to 
the actual control RT value



	 Psychonomic Bulletin & Review

1 3

of 1,008 trials. We fitted each model to this training data 
to find the best parameter set that matches all 10 points 
of the learning curve. In all V models, the EV difference 
between the two stimuli resulted in a wide gap between the 
two acquisition curves from the beginning of the training 

phase (representative examples are shown in Figs. 3B and 
C; the SPH-V and EH-V models showed a similar result).

This phenomenon is not surprising in respect of asso-
ciative learning models, as a stimulus paired with a larger 
reward is expected to develop higher attentional allocation 

Table 1   Model comparisons for expected value (EV) experiments

Bold numbers indicate the best three simulation results

Anderson et al.'s (2011b) 
Experiment 1

Anderson's (2015) Experi-
ment 1

Mine & Saiki's (2015) Experi-
ment 2

Anderson & Halpern's 
(2017) Experiment 1

BIC Ratio with 
RW(α)

BIC Ratio with 
RW(α)

BIC Ratio with 
RW(α)

BIC Ratio 
with 
RW(α)

V RW 1.057E+06 0.947 1.144.E+06 0.806 7.829E+05 0.709 5.126E+05 0.850
M 7.957E+05 0.713 7.762.E+05 0.547 3.470E+05 0.314 3.993E+05 0.662
SPH 7.949E+05 0.712 7.849.E+05 0.553 3.162E+05 0.287 3.885E+05 0.644
EH 1.066E+06 0.955 8.098.E+05 0.570 5.372E+05 0.487 4.569E+05 0.757

α RW 1.116E+06 1.000 1.420.E+06 1.000 1.104E+06 1.000 6.034E+05 1.000
M 1.086E+06 0.973 7.767.E+05 0.547 3.320E+05 0.301 3.993E+05 0.662
SPH 7.986E+05 0.716 7.787.E+05 0.548 3.241E+05 0.294 3.910E+05 0.648
EH 7.794E+05 0.698 7.749.E+05 0.546 3.228E+05 0.292 3.897E+05 0.646

Fig. 3   Simulation results Anderson et  al. (2011a) Experiment 1. 
Model parameters were fitted with ten block data from training ses-
sion. M- α (A) and EH- α model  (D) converges during the training, 

but asymptotes of the RW-V (B) and M-V (C)  models exist apart 
from each other. The SPH- α model (E) failed to simulate the result. 
The shades around the lines show a 1 standard deviation
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during the training session. However, a large body of stud-
ies, including that by Anderson et al. (2011a), reported a 
non-significant difference in behavior index between the two 
stimuli paired with different EVs. Although the similari-
ties of the behavior during the training sessions are often 
interpreted as a ceiling or floor effect, two α models – the 
M-α and EH-α models – simulated this phenomenon by 
converging at the end of the training phase (Figs. 3A and 
D). Consequently, these two models had the lowest BIC 
ratio (Table 2). Interestingly, the acquisition curve of the 
M-α model was identical to that of the study, which had 
the largest gap during 200–300 trials and converged later in 
the session. In addition, the SPH- α model showed reversed 
attentional allocation to two stimuli (i.e., higher attentional 
allocation to the low reward stimulus), thereby failing to 
simulate behavior results in the experiment (Fig. 3E).

In summary, all V models and the two best-fit α models 
(M-α and EH-α) showed different predictions during the 
training session: the V models supports a higher VDAC 
effect on a high reward stimulus and the two α models expect 
no difference between stimuli. Regardless of whether the 
absence of behavior difference during the training session 
was due to a motor-cognitive limitation or not, this phenom-
enon may serve as a major limitation of V models.

Switching and inertia

Previous studies have confirmed that the effect of VDAC 
persists over a prolonged time, exceeding half a year 
(Anderson et al., 2011b; Anderson & Yantis, 2013). To test 
whether the associative learning models capture the stability 
of VDAC, we included a study that observed the inertia of 
VDAC (Liao & Anderson, 2020).

The most distinctive manipulation of this experiment 
involved switching the reward contingency of the two stim-
uli – old high-reward and new high-reward – from the third 

block of the experiment. Successful simulations demon-
strated this switching by the intersection of the two curves 
of the old high-reward and new high-reward stimuli after the 
second training session (Fig. 4).

Although all simulations shared the same experimen-
tal schedule, how and when the two curves crossed varied 
across models. For example, in the case of the EH-V model 
(Fig. 4A), the extinction of the old high-reward stimulus 
and the acquisition of the new high-reward stimulus both 
induced the intersection in Block 3. In contrast, in other 
successful models, the crossing occurred solely because the 
newly associated stimulus outran the stable old high-reward 
value. Three models – RW-V, EH-V, and SPH-α – simu-
lated the experimental result with the extinction of the old 
high-reward stimulus (Fig. 4A–C), and the other three mod-
els – M-V, SPH-V, and EH-α – did not exhibit extinction 
(Figs. 4D–F and 5). The M-α models could not reproduce 
the experimental results, as they predicted very little change 
in the α of all stimuli throughout blocks.

In the experiment, the old high-reward stimulus still drew 
attention to an extent comparable to the new high-reward 
stimulus after changing the reward condition. Moreover, in 
Block 4, the RT to the old high-reward stimulus was numeri-
cally faster than the low-reward stimulus, even though the 
old high-reward stimulus was not rewarded. In this regard, 
VDAC for the previous high-reward stimuli appears to resist 
extinction. The two best-fit models – the SPH-V and EH-α 
models (which have the two lowest BIC scores) – exhib-
ited little or no extinction on the old high-reward stimulus 
(Table 3).

In conclusion, models that succeeded in simulating the 
switching experiment were divided into two types: (1) those 
in which switching occurs solely due to the acquisition of 
the new target, or (2) those in which switching occurs due 
to the combined effect of the acquisition of the new high-
rewarded stimulus and the extinction of the previously 

Table 2   Correlation of EV ratio and asymptote ratio of the simulation

* 10 cents vs. 0 cent
** Zero associative strength to the non-rewarded stimulus

Anderson et al.'s (2011b) 
Experiment 1

Anderson & Halpern's (2017) 
Experiment 1

Mine & Saiki's (2015) 
Experiment 2

Anderson's 
(2015) Experi-
ment 1

EV ratio 2.333 2.333 2.385 Inf*
V RW 2.30 2.32 2.38 Inf**

M 2.32 2.31 2.39 Inf**

SPH 3.82 4.26 4.34 Inf**

EH 2.30 2.87 2.90 Inf**

a M 1.12 1.35 1.62 2.42
SPH 1.50 1.97 1.90 Inf
EH 1.78 1.52 1.53 3.23
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rewarded stimulus. The quantitative comparison showed 
that high-performing models implemented the experiment 
result without extinction.

Uncertainty

Next, we included two studies that observed VDAC driven 
by uncertainty, not by EV. First, we fitted the model to the 
eye-movement data of two experiments conducted by Le 
Pelley et al. (2019). In the first experiment, two certain 
stimuli with EVs of 500 and 10 and one uncertain stimulus 
with an EV of 255 were used. Concurrent with the argu-
ment that the EV modulates the effect size of attentional 
bias, all models except one (the M-α model) showed a 
stimulus with the higher EV achieving a higher V or α 
value regardless of the uncertainty in the reward contin-
gency (representative examples are provided in Figs. 6A 

and 7A; other models except the M-α model showed a 
similar result). In the case of the M-α model, the NP dis-
tractor’s uncertain reward presentation decreased the α 
during the test phase, resulting in the worst fit (Figs. 6B 
and 7B). The NP distractor's decreased α value was below 
that of the low-reward distractor. This outcome is counter-
intuitive because the NP distractor has a higher EV value 
than the low reward distractor.

Next, we simulated the second experiment, which used the 
stimuli with the same EVs but a different level of uncertainty. 
Again, all models except the M-α model achieved a higher 
VDAC for the NP distractor. This result is consistent with 
the data obtained from the experiment (representative exam-
ples are provided in Figs. 6C, D, 7C, and D; all other models 
except the M-α showed a similar result). The failure of the M- 
α model in both experiments was induced by its expectation 
that more attention would be given to the predictable stimulus.

Fig. 4   Simulation results of Liao and Anderson (2020). The 
EH-V  (A), RW-V  (B) and SPH- α models  (C) implement switching 
with both extinction of the old high-rewarded stimulus and acqui-
sition of the new high-rewarded stimulus. However, in cases of the 

M-V  (D), EH-α (E)  and SPH-V (F)  models, the acquisition is the 
main force driving the switching. The shades around the lines show a 
1 standard deviation. The shaded areas indicate test sessions that the 
simulator targeted to fit. The legend applies to all the figures
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Next, we simulated the study by Cho and Cho (2021), 
in which reward magnitude and reward delivery probability 
were manipulated while maintaining the same EVs. The first 
experiment manipulated uncertainty by changing the reward 
probability. All simulations except the M-α model predicted 
a higher VDAC for the uncertainly rewarded stimulus in 
the first experiment (representative example are provided 
in Figs. 8A and 9A; other models except the M-α model 
showed a similar result). The differences between successful 

models were limited to the asymptote value during the train-
ing phase and the extinction speed in the test phase. Again, 
the M-α model failed to accurately anticipate and assign a 
larger α value to the certain stimulus (Figs. 8B and 9B) as 
in the experiments in Le Pelly et al. (2019).

The second experiment, in which the reward magnitude 
was altered to change the uncertainty, provided a similar 
simulation result, although the difference between the two 
stimuli was dampened during the second block of the test 
phase (representative examples are given in Figs. 8C and 9C; 
other models except the M-α model showed a similar result). 
Unsurprisingly, the M-α model failed again (Figs. 8D and 
9D). Taken together, simulations of almost all associative 
learning models successfully predicted the magnitude of 
the uncertainty driven VDAC, even though the EV and the 
reward variance were fixed. However, the M-α model con-
sistently failed to simulate the experiment in all studies in 
which EV was controlled.

Discussion

The present study adopted four mathematical implementa-
tions of associative learning models – RW, Mac, SPH, and 
EH models – to distinguish factors and explain the cogni-
tive processes underlying VDAC. From each model, two 
output variables, V and α, were included in the model-fitting 

Fig. 5   Simulated behavior results using the EH- α model (colors) 
along with the corresponding experiment data (gray) during test ses-
sions. Black lines represent the SEM. The SEM of simulated results 
are omitted due to the small size. The simulated reaction time (RT) 

for the former neutral stimulus left empty, as models cannot predict 
control RT value, rather they calculate the difference of RT compared 
to the actual control RT value

Table 3   Model comparisons for Training and Switching experiments

Bold numbers indicate the best three simulation results

Anderson et al.'s (2011a) 
Experiment 1

Liao et al.'s (2020)

BIC Ratio with 
RW(α)

BIC Ratio 
with 
RW(α)

V RW 3.047E+06 0.879 2.675E+06 0.998
M 2.973E+06 0.858 2.351E+06 0.878
SPH 2.267E+06 0.654 1.780E+06 0.664
EH 2.383E+06 0.688 2.369E+06 0.884

α RW 3.467E+06 1.000 2.679E+06 1.000
M 2.006E+06 0.579 2.664E+06 0.994
SPH 3.492E+06 1.007 1.956E+06 0.730
EH 2.259E+06 0.652 1.794E+06 0.670



	 Psychonomic Bulletin & Review

1 3

analysis, which yielded eight implementations in total (note 
that the RW- α model, which assumes equal attentional allo-
cation to all stimuli, was used for the comparison purpose 

only). Although most models successfully predicted behav-
ioral data from experiments, two models – the SPH-V and 
EH-α models – generally performed best across multiple 

Fig. 6   Simulation results of two experiments from Le Pelley et  al. 
(2019). The best fit model from each experiment (A and C)  is plot-
ted on the left, and the failed model (B and D) is located on the right. 

The shades around the lines show a 1 standard deviation. The shaded 
areas indicate test sessions that the simulator targeted to fit. The leg-
end applies to figures from the same experiment

Fig. 7   Comparison between experiment data (gray) and corresponding simulated data (colors) from the best (left; A and C) and the worst (right; 
B and D) models. Black lines represent the SEM. The SEM of simulated results are omitted due to the small size
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Fig. 8   Simulation results of two experiments from Cho and Cho 
(2021). The best fit model from each experiment (A and C)  is plot-
ted on the left, and the failed model (B and D) is located on the right. 

The shades around the lines show a 1 standard deviation. The shaded 
areas indicate test sessions that the simulator targeted to fit. The leg-
end applies to figures from the same experiment

Fig. 9   Comparison between experiment data (gray) and corresponding simulated data (colors) from the best (left; A and C) and the worst (right; 
B and D) models. Black lines represent the SEM. The SEM of simulated results are omitted due to the small size
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studies. Here, we discuss the performance of the learning 
models concerning the output values, V and α, and their 
predictions on the extinction phenomenon in the VDAC 
experiment scheme.

Associative strength (V) versus associability (α)

Many studies have attempted to incorporate associative 
learning theories to elucidate the mechanism behind VDAC 
(Anderson, 2015; Cho & Cho, 2021; Le Pelley et al., 2016; 
Le Pelley et al., 2015; Le Pelley et al., 2019; Watson et al., 
2019). Le Pelley and his colleagues (2019) implemented 
the Mac model and used the α value to simulate the dif-
ference between the attentional capture of the predictive 
and nonpredictive stimuli. The α value has been used inter-
changeably with “attention” (Mackintosh, 1975) or has at 
least been described as a component reflecting attentional 
allocation (Esber & Haselgrove, 2011; Frey & Sears, 1978). 
In this regard, Le Pelley et al. (2019) interpreted α as the 
level of attention. When modeling the “value”-driven aspect 
of attention, however, the associative value, V, which is a 
direct measure of how much value the stimulus anticipates, 
appears to be a more reasonable element than α. In this 
vein, Le Pelley et al. (2015) proposed a more straightfor-
ward computational model for VDAC in which attention is 
a direct function of the learned value. To determine whether 
V models and α models predict different outcomes (and, 
if so, how they are different), we included two versions of 
each implementation of associative model and compared the 
goodness of fit.

When there was an evident EV difference between paired 
rewards, models utilizing the V value had a lower BIC than 
those that utilized α. Notably, the SPH-V model was on the 
list of best-fit models in all studies that manipulated the EV 
as the primary independent variable. Moreover, we observed 
a positive correlation between the EV ratio and the ratio of 
asymptote of the simulation (Table 2). The V model simu-
lation results showed that a stimulus with a proportionally 
higher EV resulted in a more potent attentional capture 
during the training session than the other stimulus. This 
phenomenon was also observed by Le Pelley et al. (2019), 
who used three stimuli with different EVs (500 points, 255 
points, and 10 points).

The simulation results of the V models, as well as the 
experiment result, demonstrated that the strength of atten-
tional capture changed according to the stimuli's EV. The 
simulation revealed that relative differences (e.g., 100:1 = 
100), rather than absolute differences (100-1 = 99), are criti-
cal in VDAC. This outcome is in line with general ideas in 
behavioral economics (the diminishing sensitivity principle; 
Kahneman & Tversky, 1979). Similarly, the importance of 
the relative difference in VDAC was directly demonstrated 
by Kim et  al. (2022); for example, 100-valued stimuli 

captured more attention compared to 1-valued stimuli than 
1,000-valued stimuli captured when compared to 901-valued 
stimuli.

Although models using V to measure attentional capture 
succeeded in simulating the effect of EV on VDAC, these 
models have several shortcomings. First, models based on 
the V always anticipate greater attentional allocation to the 
stimulus associated with a higher EV. The failure of the V 
models can be seen in the simulation of the first experiment 
by Le Pelley et al. (2019). In this experiment, three stimuli 
(high value, nonpredictive, and low value) were employed, 
and their EVs (500, 255, and 10) were spaced by an equal 
distance. Although the V models predicted an equal behav-
ioral difference between each stimulus pair (high vs. non-
predictive and nonpredictive vs. low), the only differences 
observed were between the high stimulus and the rest of 
the stimuli. In contrast, the models using the α value did 
not exhibit a linear relationship between the asymptote and 
EV. Instead, they showed more dynamic changes during the 
training session and were affected by other factors such as 
predictiveness and uncertainty.

Second, V models always suffer extinction if the stimu-
lus is consistently presented without a reward. Alongside 
acquisition with the reward, extinction takes part in the other 
half of the associative learning. In most experimental VDAC 
paradigms, the previously paired stimulus is presented as a 
distractor without reward. This is a typical extinction pro-
tocol in an associative learning experiment. If the strength 
of VDAC is calculated by the V, the repeated presentation 
of the distractor should lessen the interference effect as the 
trial progresses. However, as described in the next section, 
the VDAC effect appears to be resistant to extinction. In 
contrast, α models do not suffer rapid decay during a test-
ing session. The increase in the α value during the training 
session remains relatively stable compared to the V value. 
Notably, the EH-α model – a hybrid model that reconciled 
the influence of predictiveness from the M model and uncer-
tainty from the SPH model – exhibited the best fit in nearly 
all simulations reported in this paper.

Lastly, the V models cannot explain the absence of behav-
ioral differences during a training session. Although all V 
models predict higher attentional allocation to the stimu-
lus paired with a higher EV, behavioral differences, such as 
RT or accuracy during the training sessions, are usually not 
observed (Anderson, 2015; Anderson et al., 2011b, 2013; 
Anderson & Yantis, 2012). Such results are typically inter-
preted as a task difference (as the training session empha-
sizes, while the testing session focuses on speed) or a ceil-
ing/floor effect of behavior.

However, some α models can anticipate the phenomenon 
during the training session without other justifications. In 
the simulation experiment of Anderson et al. (2011a), two 
α models, M-α and EH-α, converged during the training 
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session. The main reason for this phenomenon is that the α 
value of the low reward target continued to increase during 
the whole training session. Two models, M and EH, share 
the same characteristic, in that predictability increases the 
α value. Since the reward contingency remained unchanged 
during training, the α value of the low reward target was 
able to reach a similar level as the high reward target. Taken 
together, while models that measure VDAC with the V value 
can directly highlight the influence of EV, α models – par-
ticularly the EH-α model – can predict additional aspects of 
VDAC without further justifications.

Extinction and inertia on value‑driven attentional 
capture

The Mac and SPH models both postulate that the cue’s sali-
ence is determined by its role as a predictor of its following 
consequences (e.g., reward). The EH model, however, disa-
vows such an assumption and follows a proposal by Wagner 
(1978) that the decrement in a cue’s salience would occur 

when the cue itself is predicted by an external event such 
as context or an experiment schedule (Esber & Haselgrove, 
2011). As a result, the EH-α model demonstrates distinctive 
characteristics compared to the other models. Most nota-
bly, the EH-α model does not produce a rapid decrease in 
α by simply discontinuing the association between the cue 
and its consequences (e.g., reward). Since there is sufficient 
evidence that the acquired VDAC does not typically suf-
fer a rapid extinction, even when the reward is no longer 
available, models without rapid extinction may conveniently 
provide compatible simulations. In fact, the simulated results 
from the EH-α model outperformed other models in most 
of the experiments with significantly lower BIC scores (see 
Tables 1, 3, 4, and 5).

Further, the lack of rapid extinction shown by several 
models is also in line with the VDAC literature. For instance, 
VDAC has been observed to persist for several days up to 
as much as 9 months after reward learning in the absence of 
additional reinforcement, and it resists extinction even over 
several hundred unrewarded trials (Anderson et al., 2011b; 

Table 4   Model comparisons for uncertainty experiments

Bold numbers indicate the best three simulation results

Le Pelly et al.'s (2019) Experi-
ment 1

Le Pelly et al.'s (2019) Experi-
ment 2

Cho & Cho's (2021) Experi-
ment 1

Cho & Cho's (2021) 
Experiment 2

BIC Ratio with 
RW(α)

BIC Ratio with 
RW(α)

BIC Ratio with 
RW(α)

BIC Ratio 
with 
RW(α)

V RW 2.318E+06 0.871 1.590E+06 0.979 2.027E+06 0.701 1.616E+06 0.766
M 2.321E+06 0.872 1.563E+06 0.963 2.193E+06 0.759 1.688E+06 0.800
SPH 2.347E+06 0.882 1.582E+06 0.974 1.677E+06 0.580 1.334E+06 0.632
EH 2.310E+06 0.868 1.581E+06 0.974 1.715E+06 0.593 1.263E+06 0.599

α RW 2.662E+06 1.000 1.623E+06 1.000 2.890E+06 1.000 2.110E+06 1.000
M 2.375E+06 0.892 2.120E+06 1.306 2.955E+06 1.022 1.815E+06 0.860
SPH 2.496E+06 0.938 1.539E+06 0.948 1.460E+06 0.505 1.202E+06 0.570
EH 2.311E+06 0.868 1.536E+06 0.946 2.121E+06 0.734 1.750E+06 0.830

Table 5   Summary of best fit models (O: Best 3 models, X: worse than RW- α)

RW-V M-V SPH-V EH-V M-α SPH-α EH-α

Anderson et al.'s (2011b) Experiment 1 O O O
Anderson's (2015) Experiment 1 O O O
Mine & Saiki's (2015) Experiment 2 O O O
Anderson & Halpern's (2017) Experiment 1 O O O
Anderson et al.'s (2011a) Experiment 1 O O X O
Liao et al.'s (2020) O O O
Le Pelly et al.'s (2019) Experiment 1 O O O
Le Pelly et al.'s (2019) Experiment 2 O X O O
Cho & Cho's (2021) Experiment 1 O O X O
Cho & Cho's (2021) Experiment 2 O O X O
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Anderson & Yantis, 2013; Della Libera & Chelazzi, 2009; 
Stankevich & Geng, 2014). Apart from the prediction based 
on classical conditioning, where a previously conditioned 
response to a reward-predictive stimulus is expected to van-
ish in the absence of reinforcement (Pavlov, 1927), most 
results in the VDAC literature report no significant reduc-
tion in impairment over the course of a test phase (Anderson 
et al., 2011b; Anderson & Yantis, 2012, 2013; Bucker et al., 
2015; Failing & Theeuwes, 2014; Rothkirch et al., 2013; 
Sali et al., 2014; Stankevich & Geng, 2014; Theeuwes & 
Belopolsky, 2012).

These findings strongly indicate that reward learning 
forms an unusually persistent and highly extinction-resistant 
change in attentional priority that is biased in favor of pre-
viously reward-associated features even when they are no 
longer predictive of reward (Milner et al., 2023). Further-
more, the SPH-V model successfully simulated the inertia 
of VDAC observed by Liao and Anderson (2020) without 
rapid extinction, along with the EH-α model. As presented 
in the Results section, several models tried to simulate the 
exchange of VDAC using both the acquisition of the new 
high distractor and the extinction of the old high distrac-
tor. However, the two best models, SPH-V and EH-α, which 
simulated the result without the extinction, demonstrated 
that a sufficiently extended time (trials) was required to 
update or recalibrate previously acquired VDAC (Table 3). 
Collectively, two associative learning models, EH- α and 
SPH-V, account for the resistance to either the extinction or 
inertia of VDAC.

Associative learning characteristics in VDAC 
(modeling latent inhibition)

Most of the VDAC literature assumes that associative learn-
ing influences VDAC. However, as discussed, various char-
acteristics, including resistance to extinction and the absence 
of behavioral differences during training, refute this notion. 
For the following reasons, further examination of the char-
acteristics of VDAC must be conducted to conclude that 
VDAC is not a novel cognitive function but a variant or 
result of associative learning.

Latent inhibition is a phenomenon of associative learning 
whereby pre-exposure to a stimulus retards the subsequent 
association between the stimulus and the unconditioned 
stimulus (Lubow, 1973; Lubow & Moore, 1959). It pre-
sented a great challenge in developing associative learning 
models as it is one of the major failures of the RW model 
(Miller et al., 1995). RW model variants, including the Mac 
and PH models, overcame this shortcoming by adding a rule 
to change the α of a neutral stimulus. Although the two mod-
els implemented the change in α using different methods, 
both models can simulate this phenomenon.

Latent inhibition can serve as a good starting point for 
checking whether VDAC follows the basic phenomena of 
associative learning. First, regardless of the simulated out-
puts of V or α, all models except the RW model predicts 
lower attentional capture for a pre-exposed stimulus. Since 
V did not change during the pre-exposure session, all models 
emulated this phenomenon by lowering the α. Therefore, 
interpreting the experiment result is relatively easy, as this 
phenomenon does not tackle associative learning's math-
ematical implementation problems.

Second, it is possible to determine which output value 
of VDAC (V or α) can explain more about VDAC by look-
ing at the temporal dynamics of the experiment result. As 
mentioned earlier, all associative learning models capable of 
describing latent inhibition used the change in the α during 
the pre-exposure session to account for the phenomenon. 
Therefore, if the α value is commensurate with VDAC, the 
behavioral difference will be observed from the beginning, 
even from the first trial. However, if VDAC is linked to V, 
a slower learning curve of attentional capture may emerge.

Third, this phenomenon is only driven by acquisition, 
thereby simplifying the application of associative learning 
to the VDAC effect. One of the unique characteristics that 
VDAC exhibits is resistance to extinction. Since latent inhi-
bition can be observed during acquisition, it is possible to 
examine whether VDAC adheres to an associative learning 
scheme without addressing the extinction. Further human 
experiments observing latent inhibition can shed light on 
the underlying properties of VDAC and answer critical ques-
tions about the relationship with associative learning.

Conclusion

Associative learning encompasses multiple mathematical 
models that interpret the underlying processes of human 
cognition, and in turn, predict subsequent behaviors. Ample 
evidence suggests that associative learning accounts for var-
ious phenomena interpreted as VDAC. The present study 
formulated models and demonstrated that their predictions 
diverged when applied to various learning-related factors 
of VDAC other than the magnitude of reward. Importantly, 
the EH model, a hybrid model that supports a dual process 
of α modification, outperformed other models with regard 
to multiple factors. The high performance of the EH model 
demonstrates that complex models based on associative 
learning can more accurately explain the underlying mecha-
nisms of human attention than other simple models.

However, while the EH model adequately explained vari-
ous learning-related factors of VDAC, its performance was 
not stable across all studies considered here. We assume 
that cognitive factors other than associative learning also 
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influence VDAC. Further research on how learning alters 
selective attention could further elucidate how perception 
and cognition modules interact to appropriately process and 
react to the environment.
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